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ABSTRACT 1

The nonlinear forced dynamic¢ response of undamped thin
beam with clamped-clamped configuration was investigated
experimentally over a wide range of frequencies from
0-1400[Hz] and at differant levels of excitation .Ab alloyed
spring steel specimen with width 13mm, thickness 0.15mm and
length 105mm was used and tests were condudted by pulsating the
hase frame sinuscidally wilth peak acceleration a[m/szl to apply
uniformly distributed load. The response of the Dbeam was

ohtained by measuring the relative displacement ol the beam to

the hase frame.

An approximate eguation of motion desceribing the
nonlinear hehavior of the beam was derived thecoretically. The
effect of damping as well as the anti-symmetric responses of
the bheam were neglected . The beam responge , displacement and
velocity, were monitored both in time and freguency domains.
The nonlinear characteristics of the reoponse suﬁh as  sub  and
super harmonic, and internal resonances were investigated . in
relation to the level of excitation. Based on data collected
samples of which presented graphically, conclusions were drawn
concerning +the heam dynamic response, jump  phenomena and
transition to chaos and their relation to the existing
approximate theoretical models and experimental studiecs as

well.
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NOMENECLATURE

Cross sectional area of the test beam [mmz].
Peak acceleration [m/szj.

Width of the test beam [mm].

Young's modulus of elasticity [Gpal.
Thickness of the test beam {mm].

Moment of inertia of the cross section [m4].
Effective length of the test beam {mm}.

Load amplitude of the external force [N/mj}.
Normalized load amplitude =Pl'/EIh [1].
Nonlinear term due to the effect of transverse
displacement of the extcrnal force caused by
immovable supports [N].

Time [5].

Transverse deflection of the test beam {mm].

Normalized deflection of the test beam = Y/h [1].

Mass density per unit length [Kg/mglm].

Radian frequency of the external load [5"1].
Linear circular freguency of the nth mode [s-l].
Non dimensional length = x/1 [11.

Logarithmic decrewment {1].

Orthonormal mode shape [17].

Ahbreviations

Root mean sqguare.

Symbols not listed are defined in the text.
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Introduction ' 1

CHAPTER 1

INTRODUCT{ON

Structural members subjected to vibration are often
encountered in many engineering practices , such as rods
underaxial load, shaftsg in torsion and beams in Pbending. The
beams are frequently wused in many engineering structures,
therefore, the first step in understanding the dynamic¢s of
these structurés is to study the dynamic response
characteristics of beam elements. Of particular interest is the
determination of the conditions under which a beam starts to
behave in a nonlinear fashion, which occurs for example when
the beam undergoes large amplitude resonance motion,. as such
motions may lead to large internal deformations and usually
¢atastrophic premature failure. As the amplitude of vibration
becomes relatively large, the basic assumption of small
amplitude, inherent in the linear theory is violated, and
therefore, an analysis based on nonlinear theory becomes

necessary for a more realistic prediction of the beam dynanmic

behavior.

1.1 FUNDAMENTALS

The study of a non-linear system ig considerably more
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Introduction 2

complicated than that of a linear one , and as a result the
treatment of non-linear systems often requires entirely
different methods of attack. It sheould be also recognized at
the outset that the theory of non-linear vibrations is not
nearly developed as well as that of the linear vibrations. In
fact , it relies guite heavily on approximations based upon

linear thecry.

There are two basic approachs tec non-linear systems
namely , qualitative and guantitative , Nayfeh and Mook
(1979).The qualitative approach is concerned with the general
stability c¢haracteristics of a system in the neighborhood of
knewn solution , rather than with the explicit time history of
the motion . On the other hand , the quantitative apprcach 1is
concerned with just these histories. These solutions can bhe
obtained by approximate methods such as perturbation methods or
by numerical integration. Both gualitative and gquantitative
approachs are usually used to investigate nonlinear vibration
as non of these approcachs is sufficient to give a complete

solution to these problems.

Nonlinearities may arise and enter the equations of

motion by various ways , however, in general these
nonlinearities may be ¢lasgsified into geometric¢ , inertial and
material , Navyfeh and Mook (1979} . Geometric nonlinearities

may be caused by axial stretching of the median line in axially
restrained beams or by large beam slopes in which the small

angle assumption used in linear bending theory is no longer

All Rights Reserved i Librafy of University of Jordan - Center of Thesis Deposit



Inlroducticn 3

valid. This type of nonlinéarity has Dbeen considered by

Burgreen {1950}, ﬁcDonald (1955) , Tseng and Dugundsj {1970) ,
Eisley and Bennett (1570) »  Takahashi (1976) . (1979) ;
Bennouna and White {1984) , Lewandowski (1987) , Liu , Kuo and
Yang (1988), to mention a few. On the other hand nonlinear

inertia effects may he caused by the presence of concentrated
or distributed inertia elements, and by non-planar or

parametric motions. Nonlinear bheam elements of this type have

been considered by, Haight and King (1972), Crespo da silva
(1278} , Zavodney and Neyfeh ({198%) and Hamdan (192921). Material
nonlinearities occur whenever the stresses are nonlinear

functions of the strains. The nonlinearities may also appear in
the boundary conditiens, Stupnicka (1283) , Moon and Shaw

{1983} .

It is generally known that exact analytical solutions to
the nonlinear vibration of heams are difficult , so0 one has to
rely on approximate solutions to these Prohlems. A recent
review of this subject is given Dy Hamdan {1991). The +two
commonly used methods are hased on the assumption that the beam
deflection is separable in space and time, Nayfeh and Mook
(1979). In the first method the assumed solution is some form
of truncated series in normal modes to which any of the
variational methods such as Galerkin's method is applied , to
reduce the original partial differential equations to the
temporal modal equations of motion. If such series is limited

Lo a gsingle mode, then the method is known as the single mode

approach which has a limitation that nonlinear dynamic coupling
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Introduction 4

between varicus modes is neglected . Desplte this limitation,
this approach appears to lead to a resonable prediction of the
response of such beam elements and it was used effectively by
many authors , Zavodney and HNayfeh (19%85) ., Moon and shaw
(1983) , Tsenyg and Dugundji (1970} Takahashi (1976) , Wagner
(1965}, and Hamdan {(1990}. On the other hand, the multiple
modes approach has been used by some authors Yamaki and Mori
(1980) , McDonald (1955) , Eisley and Bennett (1970), Takahashi
(1979). It should bhe mentioned in the passing that the assumed
single mode approach leads to a nonlinear deterministic
Duffing's type oscillator (odd-powered type nonlinearity),
while the assumed n modes lead to n nonlinear coupled Duffing’'s

type oscillator.

The second common approach is based on the assumption
that the time part solution is a harmonic function , and then
one applies the harmonic balance method to obtain the spatial
nonlinear bhoundary value problem, Bennouna and white ({1984) .
Lewandoski (1987} , Nagesararao (1988). Iterative technigues ,
finite element and finite difference methods have Dbeen wilidely
used to solve relevant nonlinear boundary "value problems,

Takahashi (1976} ,Mei (1973) , Rao and Raju (1%76).

Throughout the vast amount of researchs conducted on the
nonlinear heam dynamic résponse, many of the nonlinear dynanmic
characteristics are known such as jump phenomena, sub and super
harmonic rescnances. However,to a variety of nonlinear

phenomena arising in such physical systems which are usually

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



Iintroduction 5

governed by simple deterministic Duffing's equation. A
distinctly new class of motion called chaotic motion , has been
added recently. These consist of bounded and unstable periodic
motions with random-like behavior which may persist for a long
period of time. These motions occur only undercertain
conditions of forcing amplitude and freguency which are
distinguished from the known stable harmonic and periodic
motions in the two dimensional phase-plane, these motions are
characrarized by many closed trajectories, whereas a single
periodic solution 1is characterized by a single closed
orbit.Chaotic behavior in nonlinear oscillators was first
reported by Ueda (1979),{1980),(1981).Deterministic systems
exhibit continuous, bounded motions (chaocs) that can be found
in many engineering systems such as the vibration of buckled
beams and plates , Moon (1980) , Tongue (1986) , Pazehki and
Dwell (1987) . These motions occur when the vibration amplitude

hecomes large enough to cause the beam to snap-through ". Of
a particular interest is the determination of the conditions

under which suc¢h chaotic hotions may occur.

1.2 PRESENT WORK OBJECTIVES

Although a significant progress has heen made to predict
these chacotic motions theoretically, Stupnika and Bajkowski
(1986}, Stupnika (19287), Ueda (1981), i.e in <connection with
sub and super harmonic instability analysis, most of the
existing analysis of chaotic hehavior is based on qualitative

methods.For example these motions are studied by monitering the

All Righté Reserved - Library of University of Jordan - Center of Thesis Deposit



Introduction 6

response wave form, fregquency spectrum and phase-plane plots,
therefore, one may determine the conditicons under which these

motions occur.

The object of this worﬂ is to attempt experimentally to
shed more light on some nonlinear dynamic behavior of a typical
clamped-clamped thin beam. Nonlinear response characteristics
of the beam such as sulr and super harmonics, jumps and chaos
will be studied. Emphasis is placed on the effect of level of
exeltation on these phenoména ., since there seem to bhe a lack
of experimental data on this subject. Correlation of
experimental data with existing theoretical models will Dhe
attempted, whenever possible in order to clarify some of the

physical aspects of the prohlen.

1.3 ORGANIZATION OF THE THESIS

The thesls is divided into six chapters , of which this
introduction the first. Chapter (2) is a review of the
previous related literature . In chapter (3) a basic review of
the known thecretical dynamiec behavior of nonlinear beam is
presented. In chapter (4} the experimental set-up and the
measuring techniques,as well as , the experimental procedures
are discussed in detail. The results of experimental work are
presented graphically and discussed in chapter (5). Finally the
informaticon gained from experimental work on the effects Bf
lavel of excitation on dynamic response and transition to chaos

are drawn together in chapter (6) , which containsg the
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Introduction 7

remarks and recommendations for further work on this problem
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Review 8

CHAPTER 2

REVIEW OF PREVIOUS WORK ON NONLINEAR BEAM VIBRATION AND
CHOATIC MOTION .

2.1 INTRODUCTION

In the theory of small linear vibrations of a beam, it
ig found that the complete moticen ¢an be described as the sum
of infinite number of separate , distinct sinuscidal modes. The
medes are statically and dynamically independent of each other
if there is no damping or if the damping coefficients are 1in
proportion to the mass and stiffness. The amplitude and
frequency of a given mode are neither functionally related nor
are the amplitudes and the fregquencies of various modes

dependent upon each other, McDonald (1955), Burgreen (1950).

These conditions do not hold in the vibration of a bheam
whose eqguations of motion are essentially nonlinear. A typical
example to investigate such equations is provided in the case
of uniform beam whecse ends are axially restrained, McDonald
(1955) ,Takahashi {(1979), Liu, Kuo and Yang (1988).The nonlinear
effect in the beam is produced by the axial stretching of the
beam nuetral axis. A discussion of the problem of the vibration
of uniform beam with axially restrained edges provides a
technical information about the amplitude and frequencies of

the vibration of such a beam. This information may be of value
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Review 9

to machine and structural designers since the analysis shows
that significant changes in the freguencies occur if the beam

ends are restrained

The alm of this chapter 1is to review some of the
investigations that have been reported on the nonlinear beam
vibrations with c¢lamped ends and_ its related factors. 1In
particular, the cases where nonlinearity arises from mid-plane
stretching, and to report some of the studies c¢onducted on

choatic oscillation-.

2.2 NONLINEAR BEAM VIBRATION

McDonald (19585) investigated the vibratioﬂ of a uniform
beam with axially restrained hinged edges. The heanm is
gsubjected to a concentrated force at its mid-span, and with
arbitrary initial conditions, exhibited a dynamic coupling of
its modes of vibrations. The freguencies of various modes are
functionally related to the initial conditions , particularly
the amplitudes of all modes . Eringen (1952) , and <Chu and
Herrmann (1956} derived an approximate solution to the equatioﬁ
of motion for large vibration amplitudes for simply supported
beams and plates and predicted the appearance of cubic
stiffness term in the differential ec¢quations of motion in each
mode . Smith , Malme and Gogos ({1961) investigated the
nonlinear behavior of clamped-clamped thin Aluminum-strip underx
sinusoidal pressure excitation. Their experimental measurements

showed that the ratio of the strain at the end of the strip to

399027
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Review i0

-that at the center was dependent on the amplitude of
vibration,which implies that the fundamental mode shape is much
flatter at mid-span and has higher curvature at the ends at
large vibration amplitudes. It was suggested that the steady
state forced response could be more accurately predicted if the
flexural displacement could be expressed as the sum of at least
two modes , the relative proportions of which would change with

the level of excitation.

Tseng and Dugundji (1970) experimentally and
analytically investigated the nonlinear wvibrations of a

clamped-clamped beam excited by ginusoidal motion of its

gupports in a direction normal to its span . Applying the
harmonic balance method to solve Duffing’s egquation they
found that super-harmonic response of orders 3/2 ,2,3,.... as

well as sub-harmonie responses of orders 2/3,1/2,1/3 could

occceur 1in addition to the fundamental response.Multiple
solutions may exist dependinq on the initial conditions. Theirxr
results indicated that , for large amplitudes of vibration .

the general solution involved the forcing frequency componeﬁt

as well as the super-harmonic and sub-harmoni¢ compenents.

Busby and Weingarten (1972) examined the effects of
multi modal participation for simply supported and
c¢clamped-clamped beams , using the finite element technique to
formulate the nonlinear differential equation. The averaging
method was used to obtain an approximate solution which was

compared with results of solutions obtained by using an analog

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



Roview 11

computer., It was Eound that the phenomenon of coupled responses
will oc¢cur if the nonlinear stiffness terms are large.
Takahashi (1976} studied the nonlinear free vibratien of a
clamped-clamped beam with immovable ends. His work considers
the effect of multiple mode participation and higher Tharmonics
of motion. This case was analyzed by applicaticn of Galerkin’'s
method. The deflection of the beam is an assumed series of the
product of the normal. modes of a clamped-clamped beam and
unspecified function of the time. The resulting nonlinear
ordinary differential equation of motion was solved by the
harmonic balance method. Multiple mode approach , single mode
approach and finite difference methods solutions were presented
and those solutions were compared for varicus amplitude ratio
of a clamped-clamped beam . The main conclusions of his work
were that the increase in the forc¢ing amplitude considerably
affected the nonlinear vibrations of a clamped-clamped
beam.Also the third harmonic was found to play a significant
role in the first natural frequency range. In particular when
the beam is subjected to a periodically varying load is on the
beam due to parametric excitation through nonlinear c¢oupling

terms.

The nonlinear vibrations of a clamped-clamped beam with
initial deflection and initial axial displacements has been
studied theoretilically and experimentally by Yamaki, Otomo and
Mori {1980)}. Their study clarifies the general features of the
nonlinear response of beams under harmonic excitation.The

~solutions have been obtained theoretically by the authors in an

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



Roview 12

approximate manner, by assuming the beam to he a three degrees
of freedom system and by neglecting the effect of damping as
wall as that of anti symmetric responses of the beam. The main

results can be summarized as follows

a) Theoretical predictions are generally in reasonable
agreement with experiméntal ones , but there are some
discrepancies between theory and experiment , significant with

the increasge in amplitude.

b) Nonlinear responses become much more complex in cases

when the beam is buckled under the initial axial displacement.

c) 1In addition to the responses theoretically
predicted,a variety of nonlinear responses have bheen found to
geeur  in .connection with the internal and combination

resonance,as well as dynamic snap-through phenomena.

The effect of large vibration amplitude on the
fundamental mode ghape of a clamped-clamped wuniform beam was
studied by Bennouna and White {1984). The results were
expressed with the fundamental resonance frequency as . a
function of the amplitude to beém thickness ratio . They found
that the theoretical values were higher than the experimental

ones due to the flexibility of the lamps and the coil mass.

Although solutions for the steady state problem have

been found , there is assurance neither that these are unigque
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Feview 13

nor that they are stable solutions because of the nonlinearity
of the equations. Consequently , it is necessary to check the
stability of these solutions and to investigate the possibility
of further steady state solutions ,.Bennett and Eisley {15970).
The stability of the solutions is investigated by studying the
behavior of a small perturbation of the steady state response.
The perturbation equations in general result in coupled
Hill-type equations. The stability problem has received very
little attention in the past , although Bennett and Eisley
(1970) analyzed the coupled Hill type eguations by a direct
application of TFloquet theory. Busby (1371) investigated them
by means of the averaging method. However . for the coupled
Hill-type eguations it seems that there exist no convenient

methods of analysis

Takahashi (1980) made a stability analysis of the steady
state response for the large amplitude of a nonlinear beam with
a clanped-clamped configuration under periodic excitation using
the multiple degree-of-freedom approach. The unstable
amplitudes of the first and third modes were plottedl in the
stabillty diagram theoretically and unstable regions were
located experimentally, especially the unsgtable houndaries of

the third super-harmonic response of the first mode.

All of the above studies use Duffing’'s equation model

which may be written in the following form see, i.e,Meirovitch

{1986)
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Reyilew 14

¥+ 2F X+ x+gx =PocosQr, wn=1 {2-1)
where

¥ = damping coefficient.

e = small given parameter.

Po= amplitude of the harmonic external force,.

) = driving circular fregquency.

This type of Duffing’s eguation appears in various
physical and engineering systems (e.g noenlinear beam vibration
with geometric noniinearity ), and this is one of the simplest
and most important nonlinear differential equations. There are
various types of steady motions exhibited by Duffing’s equation

Among them deterministic or regular motions are generally
known , €.g , harmonic , super harmonic and sub harmonic
motions . However , owing to the perfectly deterministic nature
of the equation , no reference has been made to the possibility
of the existence of chaotic metions for a 1long time . The
occurrence of chaotic motions was originally studied by Ueda
{1973),(1978),(1979). The author made a survey of the steady
motions exhibited by Duffing’'s equation using analoy and
digital computer simulation. The obtained sclutions were
examined and regions of regular and chaotic motions were
determined at different initial conditions and system
parameters such as damping and load amplitude of the external
force.‘Regions at which sub and super harmonics sustained in
relation to the occurance of chaotic motions were located
depending on the phase-plane plots. Samples of chactic and
periodic motiong are shown in Fig.{(2-1}.

Moon (1980) conducted a study in which the existance of

All Rights Reserved . Library of University of Jordan - Center of Thesis Deposit
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strange attractors was experimentally demonstrated,

geheralization of a limit cycle

T
A

i

- :._I—L_Lj_l_l TU IR S PR
e e B i A
Displacoment '

- A 1 " A 1 . N I
-4 pt; 0 3 !
b) Displacement
Fig.(2-1): Numerically calculated phase-plane

trajectories a) periodic b} chaotic motion, Hoon {1990).
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The experimental apparatus consists of a cantilevered beam
that was buckled with magnetic forces. In this case the motion
consisted of the beam snapping f£rom one huckled .position to
-another in ¢haotic manner., Moon also determined an
experimental threshold criteria for chaotic motion by studylng
the effect of the forcing amplitude at certain forcing
frequencies. The main conclusion was that at sufficiently high
amplitude of the external forcing, chaotic metion would occur
and such motion might not pérsist. However, a threshold might
occur when the‘beam jumps spontancously out of periodic to

chaotic motion, this threshold is shown in Fig.(2-2).

\ ICHAOTIC

al- \ EXPERIMENT ‘ \/\/\
PLRIODIC _._...._-\

", MOTION

S—THEORY DAMPING RATIO Y=00ICA
- BUCKLING DISPL. 21y * 30 5mm

Farcing Amphiude, A,, mm (Frak-pecok)

-
28]
b

NATURAL FREQUENCY de 934 hs

l_ FEG
o . | | . , - 1 ] J

4] 7 a 9 Q ||I iz 13 14 15

I
Forcing Frequency, —zrn;;- , hz

FPig.(2-2): Experimental and theoritical thregholds for
chactic motion for a heam  buclkled by magnetic forces, Hoon

(1580).

All Rights Reserved - Library of University of Jordan - Center of Thesis Déposit



Stupnicka and Bajkowski (1986) have studied the 1/2 sub
harmonic resonance and its transiticn to c¢haotic motion in a
nonlinear oscillator with unsymmetric nonlinear force. Chaotic
motien has also been observed for the c¢lassical *Duffing
equation with positive cubic nonlinearities , i.e , hardening
nonlinearity . Stupnika (1987} has studied theoretically two
types of nonlinear oscillater 1.e symmetric and unsymmetric
elastic characteristics in an attempt to trace routes to choas
for both types of the forced oscillators having single
equilibrium positions . The main observations of her Wwork
were that the zone of chaotic motion occurs in the neighborhood
of the theoretical stability limit of the 1/2 sub harmonic
resonance: i.e, close to the freguency where resonance curves
have vertical tangent. Alsc anothex obse}vation was that the
narrow chaotic zones occur near the jumps could be preceded by
a cascade of period doubling as obtained from simulation

results.

More recently, Moon and Li (1990) studied experimentally
the chaotiec vibratons in a pin-jicinted space truss structure.
Their results demonstrated that under periodic excitations, the
truss response exhibited a chaotic-like behavior, see
Fig.{2-1). The ‘dynamics of the truss becomes more complicated
by nonlinear pin-joints. The degree of chaos was lowered Dby
adding a tension cahle along the longeron directioen of the
truss. Criteria for chaotic motion was obtained in the truss as
shown in Fig.{2-3), in which the horizantal axis represents the

driving freguency while the vertical axis is the acceleration
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of the shaker. The graph also shows the effect of cable tension

on the occurence of chaotic motion.

It might be concluded from the afore mentioned studies
that transition from regular *to chaotic motions in a
deterministic Duffing’s oscillator cCour at a gertain

parameters of the equation of motion. Of particular importance

are the amplitude of the external load applied and the level of

damping. Also this transition from regular motions to chaotic

ones could bhe preceded by a series of period doubling related

to higher harmonics. In the present experimental work, the

effect of varying the Jlevel of excitation over a certain

fregquency ranges will be studied to attempt to predict such

transition from regular to chaotic motiong using the two

dimensional phase-plane, freguency spectrum and time histories

of motion. ‘

o — T=630y 7

H —: T«1l0ig

Ferelng Amplitudae

Forcing frequency

Fig.(2-3): Criteria for chaos in a space truss, Hoon &

1.0 -{1990).

*y
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CHAPTER 3

REVIEW ON THE THEORETICAL NONLINEAR
DYNAMIC BEHAVIOR OF CLAMPED-CLAMPED
BEAMS

3.1 SURVEY

One of the most fundamental problems in the nonlinear
vibrations ¢of structures, is the nonlinear response of a beam
under periodic¢ lateral loading , whose edges are restrained from
axial displacement. As mentioned previously the solutlioen to this
problem leads to nonlinear Duffing type oscillateor. 1In the
followinyg theoretical review , following similar analysis made
by Yamaki and Mori (1980) , the effect of damping as well as
anti symmetric modes are neglected in the theoretical derivation

of the equation of motion

3.2 Basic EQUATIONS AND BOUNDARY
CONDITIONS
Assume that a uniform Y
beam with c¢ross sectional area % g_+x
X=0 w=1l

A, moment of inertia I and

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



Review of Thecretical 20
length 1 is subjected to the uniformly distributed periodic
lateral load Pces{lt
The governing equations of motion for the transverse

vibration of this straight beam

large deflections are permitted can be expressed as follows
according to Takahashi {(1978%)
* E A L a3y 2
P = - -
J =" ax (3-1)
2 1
4 2 2
gy ayY *» 'Y
L (Y,P) = EI p + pPA > + P 5 = Pcos{it {3-2)
ax ar ax
For this case of c¢lamped~clamped c¢onfiguration

houndary conditions become

dy
At x=0 ; Y= = 0
dx
dy
At x=1 , Y= = 0
dx
-

If P=P = 0 , then equaticon (3-2) will be reduced to the
linear eigen-value problem describing the beam motion which <can
be solved by the classical methods such as the separation of
variables technigue. After the application of the clamped
boundary conditions to the obtained solution, the following

which is axially restrained and

the
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»

fregquency equation for the beam is.obtained

1 -~ cos 31 cosh 31 =0
. 3] n

where: P ‘
Bl =w """ ( EIl/pl )

L] ™

-1/4

(3-3)

(3-4)

In order to transform eguation (3-2) into a dimensionless

form, the following notations are introduced assuming

that the

beam has a rectangular cross-sectional area with width b and

thickness h

4 4
- P 12 P
E = X/Z, ' P = t = i Y =Y/h
' EIh Ebh
Qo = ( 1/ 12 WEI 7 om™? | w =06, Tt
With the above notation , eguatioen ({3-2)
rewritten as:
l
64y ay ay .z 62y -
L(y)= 6 I (——}° df - P coswT =0
¢ T , % 9
ay
= = 0 ¢ — [ -1
At £=0 , 1 Y 3% 0
3.3 GENERAL METHOD OF SOLUTION

could be

(3-3)

(3-4)

The method used in the solution is the assumed mode shape
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method. The initial value problem is obtained Dby assuming a

ceries solution satisfies the clamped boundary conditions

y = E qa {t) ¢ (&) m=1,2,3,.. {3-5)
m m

where
y = Beam deflection.
qm{T] = Unknown time function.
¢m(E) = Orthenormal natural modes of the vibration

whose both edges clamped : that is

sinhom + sinaom

= h - ¢o - sinh - 8in
¢m(fl cos dmf Sdmf “osham -cosam ( dmf amf)
3-6)
& (
1 -~ c¢oshom cosdam = 0
Further
4
& b 2
¢’!'r| - W ¢’ - 0 ' © -«
2 m il m m -
at
1 . , L (3-7)
1 if m=n
I Gy ¢, K =0 = 0 if mxzn m,n=1,2,3...
0 .

The first five of the functions ¢ (£} are depicted in
m
Fig.{3-1) . Note that ¢ (£} with m=1,3,5,.. are symmetric while
i .

those with m=2,4,6,.. are anti-symmetric with respect to the
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mid-point  ¥=1/2

Applying Galerkin method to eguation

tLo:

1

j‘L(Y) ¢n{) af = 0 ‘

o SR S A o (el S S S

n=1,2,3

%;/\

| 3.
. J/////_

——

tt-
%0/\

By ©

by ©

7
s

Fig.(3-1): Normal

clamped-clamped hqam.

* yvibration,

(3-3) which leads
{3-8)
¢ (n=1-5) for the
il

All Rights Reserved ) Library of University of Jordan - Center of Thesis Deposit



Rewiew of Thecretical ... 24

Performing the integration gives

2 -—
A - ~9
w? qn + g dn + 6 z ZE BkL ﬁmh qkqlqm re cosuwt - (3 )
] - m
arT
where
i 2 i
3 om dpm  Bgm
= fal = - L d -
{?mn I 2 d}n s J g¥ ¥ ¢ an
a
i
/= af L 3-10
;IT-I J‘¢T'|E { 1 )
o]
It is noted from symmetry , [Smn = 0 when m+n is odd

while yn = 0 when n 1s even.

-

Eguations (3-10) represent a set of coupled Duffing

equations in terms of gm(7T) - Yamaki and Mori {(1980).

Equation (3-9) could be rewritten assuming two

symmetrical mode vibration as
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2
4 dn z TA) -
; + Whgn + 6 n =¥n P coswr n=1,3

ar

where
L (3-11)

én = z E E 3kl f3mn 49,9

¥k=Z1,3 t=1,3 m=1,3

-

2 3 2 2 2 z 3
1 = fi14 + 3 311394 + 2313 + (311333 +{731 {133
A q1 fef3 qiqa g q1q3 pufi qiqa B -ﬁ qs

a 2 2 2 2 z 13 3-12
2 = (h3611q1+ 3 Biaﬁaaq1q3+2 ﬁ13q1q3+ﬁ11633q1q3+ ﬁsaqa & )

Relevant values of the coefficients in egquation

(3-11) are as follows , Yamaki and Mori (1580}

wl = 22.37 ' w3a = 120.9
Y1 = 0.8307 ' ¥3 = 0.3638 {(3-13)
11 = ~12.3 p f31a = 9.731
333 = -98.9
Substituting numerical values listed above result in

two coupled Duffing equations of the form
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2
d di 3 2

2 + 500.417 qi+907.8 q1~2154.6 1 q3+8436q1q§+
ar

2 —

+ 5774.4gq3 = 0.83PcoswT . (3~-14)
62qa 3 2 2

- + 14616.8 g3 -718.2q++8436 q1gq3 -173234tg3
ar

3 _
+ 58687.293 =0.363PcosWwT
9 (3-15}

These coupled Duffing equations were solved by Yamaki and
Mori by assuming a steady state solution of the form

3 iH .
gm = z am cos(juwT) , m=1,3 y M= 1,1/2,1/3,.. (3-16)
%o

and applying the balance harmonic methed. For given values of

P, w ,and u, they obtained a get of cubic simultaneous eguations
for the determination of a%p which solves the problem. This
theoretical model will be used to explain the experimental
resultsin the following chapters. Since this theoretical model

results in n-coupled Duffing’'s equations, detailed and accurate
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gsolutions are beyond the scope of this thesis as this involves
complex mathematical manipulations.Solutions, however are known
for the gsimple case of a single degree of freedom Duffing’s
oscillator (n=1). This solution 1s shown in Fig.{3-2) which
shows a typical form of response amplitude as a function of
excitation frequency in the neighborheood of the linear rescnant

frequency.

Response amplitude

10 o -2 fu’ A 16

| Fryguency ratio

P

Flig(3-2): Nonlincar forced response of a system modelled

by Duffing equation, Robertson (1984).
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Response curves are shown for three 1levels o¢f exciting
force. Well-known aspects of the resgponse curves are the
amplitude jump phenomena-rapid rise or collapse of response at
points in the resonance region which is shown in the path ABCD
that is followed for increasing fre¢guency with a collapse at BC,
while reversing of forcing frequency the path DEFA would be
followed with an incremental Jjump at EF. It is also seen that
two stable response amplitudes may be obtained for a given force

and the system may be switched hetween these, i.e, points G4 and

Gz, by means of an impulse.

The Duffing oscillator given by equation (3-15) with
n=1, can also exhibit similar resonance responses as those 1in
Fig.({(3-2) at forcing frequencies which are multiple
(super-harmonic) or fractions (sub-harmonic) of the forcing

freqguency.
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CHAPTER 4

APPARATUS AND INSTRUMENTATION

4.1 INTRODUCTION

The experimental investigation for the nonlinear dynamic
response of a clamped-clamped beam subjected to a uniformly
distributed periodic¢ loading over a wide range of fregquencies
at different levels of eéxcitation was «c¢onducted. In the
following sections, the experimental test setup as well as the
different instrumentations and measurement technigques, used to
carry out the experimental investigations, are described in

detall.

4.2 TEST SPECIMEN AND BASE FRAME

A test beam with 105mm 1in length, 13mm in width and
0.15mm in thickness made from spring alloyed steel is used
The Young's modulus E and the mass density p were found to be
E= 168*10° N/m° and p= 7.67%10° Kg/m . The initial deflection
of the beam was found to be almost negligible. In addition, the
beam material was analyzed using atomic wave absorption test.
The chemical composition 6¢f the alloy are {(0.01% Mo, 2.59% Ni,
0.06% Cr, 0.34% NB, 1.72% Cu). The base frame was fabricated
from a commercial mild steel in the workshop of the faculty of

engineering and technology, University of Jordan.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



Apparatus and Instruventation 30

- a0
T
1 a—
I 150 |
, — 07— n b 42 wlm 5d |
Lhg o . -
e UEs I L)
il == == T2
o~ T =2 EF TR
-I— Tryah J—';) 1'||[| Bt
o L AR
<7 |"‘:!'--:1 {‘-—- I ]
o B e e e
- 15 _% Y
T[T
4 [ UJ :_1JI :[! [ b g ‘_{‘i._.‘
! ."Eji'l ‘
. (3

Part lisn »

Ho. QuantivLy Hame !Iat.‘c_r"la'lmm_h;
1 1 Vel plek-up .{’._!:11” nl,r'_r:_']:”_: I
2 ! vispl, plck-up|stain steol
3 ! tosk beam . |30ring steel

L] 1 hoceleromrier :‘itl.ain. stee])

5 1 Dagse [rame 1Mila rst.ge_ll o
“-6- ) - 1 o Ex::it-er head, Stanl

7 a HG Irolts ' Gteel

3] 2 Sl;i;E-[‘mr;.h-r:;:‘l'. f\]'l;llrlii:inl‘;l

Fig.({4-1): Schematic diagram of the test beam ,base frame

and transducers.
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As can be seen in Fig.(4-1}, the clamped portions of the
beam were stiffened with a pair of 1mm aluminum sheets which
arefirmly fixed to the mild steel base frame <through two 6mm
thick steel plate by two M6 steel bolts. The base frame is
bolted aﬁ the middle to the exciter head. By shaking the Dbase
frame sinusoidally with radian freguency Q énd peek
écceleration a[m/sz], a uniformly pulsating distributed 1load,
PcosOt can be applied to the beam, the load amplitude Dbeing

P=pbha = 14.95%10 "a{N/m)

4.3 TeEST EQUIPMENT AND INSTRUMENTATION

Tests were conducted by exciting the base frame of the
beam periocdically and meésuring the relative displacement and
velocity of the beam to the frame by using two contactless
dynamic pickups {(B&K MMOOO04 and B&K MMD0O02) respectively. The
mounting of.the test beam to the vibration exciter (B&K 4808)
and the arrangement of the transducers are shown in Fig.(4-2).
It can be seen that both transducers facing the beam are
located at equal distances from the midspan of the beam. A
piezoelectric accelerometer (B&K 4371) ig used to monitor the
acceleration of the exciter head. A schematic diagram of the
whole test set up is shown in Fig.(4-3). The output signal from
the pickups was simultaneously fed to a digital £frequency
analyzer (B&K 2131) and to measuring amplifiers (B&K 2616),
then two tunable band pass filter (B&K 1621) and to a digital
storage oscilloscope (0S5 4100). Using this arrangement, it “was

possible to measure the R.M.5 value of the "~ amplitude of
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The dynamic\characteristics and calilbraticon of the
dynamic pickups and the processing equipment can be seen in the
manuals provided by manufacturers .. Sinc? man§ .different
equipment were used in the present work it is not possible to

report their characteristics and their calibration procedures.

A general view of the experimental set-up 1s shown in
Fig.(4-4}.
Digital
frequency
anolyzer
2131
) Meosuring Bond Boss
» Amplifire w—{Filler -
o lnttol
2 0! Dig
Sl ‘ LA - Storoge
— ”___LUscuhscope
Measuring [unakle | 0541100
H“?(”Et‘c - Amplifire  |-r—{lond Bassl——s
Ui o004 Hogrc e 2610 Filker 162] ,
MH ooDe2
. Vibro on - X -
) Acceloneter [mater  j[Pawze supoly Recorder
- 13N 251 2500 wx 4402
Vibration
Exciter Powet Exciter |
1808 - - BapliFire —a—lcontrol
' 27le 1647

Fig.(4~3): Schematic diagram of the experimental set-up.
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4.4 TEST PROCEDURES

The experiments were conducted using the magnetic pickup

(MM 0004) located at x/I~0.3 for measuring the fréquency
response characterigtics of the clamped beam while the other
pickup {MM 0002) located at x/1~0.7 for measuring the velocity
At a given level of excitation, depending on displacement,
velocity and acceleration of the clamped beam it was possible
to investigate some of the nonlinear dynamic characteristics of
motion. The overall experimental procedure is described in a

sequence manner as follows

4.4.1 Frequency response characteristics

of the beam

Based on the theoretical model presented in chapter{3},
and for the dimensions and material properties of the test

beam. It can be seen that relevant parameters for the test bheam

are:

P

1]

PL*/EIh = 24.17 * a
4

T = ph/12 = 3.656 * 10> =n

The first three natural frequencies of the bean, fn

{n =1-3) are 190 Hz , 520 Hz and 1020 Hz respectively.

With all these parameters prescribed, the test

procedures were carried out as follows
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a} The test beam was firmly fixed to the base frame to
simulate the clamped configuration as possible without any

initial axial tenzion or deflection, i.e straight beam

P) TFor measurements of the beam response, the
contactless pickup (B&K MM 0004) was wmounted and fastened by a
u-shaped steel plate of 3mm thickness bolted with the base
frame . The pickup was located at x/i>0.3 and at distance 1.5mm
over the test beam surface to monitor the displacement of the
beam at this location. The same procedure was done to the other
contactless pickup (B&K MM 0002} from the other end of the
clamped portion of the test beam to monitor the velocity of the

beam also at x/1~0.7.

¢) For measurements of the acceleration of the exciter
head , the piezoelectric accelorometer (B&K 4371) was mounted
at the center of the base frame which was connected to the
vibration meter {B&k2511) previously calibrated to read the

2
peak~peak or the R.M.S value of acceleration in (m/8 ).

d} The base frame carrying test Dbeam , pickups and
accelerometer was mounted symmetrically to the exciter head of
the vibration exciter (B&K 4808), esach pickup was attached to a

measuring amplifier (B&K 2610).

e) After the calibration of the instruments, vibration
exciter was driven by a power amplifier (B&kR2712) and

controlled by the exciter «control (B&k1047) from which the
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excitation frequency was c¢hanged and the amplitude of

exclitation was controlled through the output voltage.

f} By varying the excitation frequency from (0-1400}Hz,
at a given level of excitation, the vibration signals were
averaged on the measuring amplifiers , monitored on the digital
frequency analyzer (B&k 2131) and the digital oscilloscope and
for certain conditions samples were recorded on the X-Y

recorder.

g} During the measurements o¢f the heam response
characteristics and chaotic¢ motions, at each given value of the
excitation freguency, the level of excitation was increased
step~wise within the available instruments range from 5-50 m/s2
peak to peak. Also tests were reported by keeping force level
constant by controlling the amplitude of the output voltage
from the vibration exciter and varying the excitation frequency
in two directions i.e dincreasing the frequency and then
- decreasing it to observe the effect of amplitude on the
nonlinear dynamic characteristics such as jump phenomena, sub

and super harmonics in addition to the chaotic behavior,
4.4.2 Chaotic motions

To investigate the transition from regular (periodic) to
chaotic- motions experimentally, observations were made on the
conditions under which these motions occur depending on phase

plane plots (i.e x versus x). At certain conditions of
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frequency and force gsamples of these were presented

graphically.

4.5 REPEATABILITY OF MEASUREMENTS

Measurements of vibration amplitudes were repeated and
averaged from time to time under the same test conditions.
Their wmean was the final recorded value, the averaye

o

discrepancy was found to be Y6 %.
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CHAPTER B

RESULTS AND DISCUSSION

5.1 OBJECTIVES

The a;m of the present experimental work was to
investigate the effect of the level of external excitation on
the nonlinear dynamic response of the clamped-clamped beam,
mainly the sub and super harmonic rescnances, jump phenomena.
An attempt was made to determine the conditions under which
transition from regular or periodic wotions to chaotic motions
depending on the phase-plane plots. In this chapter, samples of
the experimentally obtained results are graphically represented
and discussed. Before each experimental run, preliminary tests
were made in order to check the satisfaction of the required

experimental conditions and the measuring instruments.

5.2 PRELIMINARY TESTS

The first step done in this experimental work, was to
ensure that the test beam is firmly fixed to the Dbase frame,
taking into account that the test beam is not subjected te an
initial deflection or initial axial tension. After this the
magnetic transducers and accelorometer were mounted on the
gspecified positions as illustrated in the previous c¢hapter and
connected to the vibfation measuring instruﬁenﬁs. A simple

impulsive test response was mwade TO determine the damping
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Results and Discussion
coefficient of +the Dbeam using the logarithmic decrement
equation :
1 X
S5 = ln —2 (5-1)
n n

where :

Xo = the amplitude of the first single cycle.

¥n = the amplitude of the nth signal cycle.

The free beam osc¢illations are shown in Fig.{(5-1). The

logarithmic decrement was found to be about 0.023,

I

i
A4 [

i
Fil]

|
|

e TH ]
i
TR LRI |
A
It |

i

Fig.{5-1): Free oscillations of the test beam after

impulse.
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5.3 EFFECT OF THE EXCITATION LEVEL
ON THE BEAM RESPONSE

The forced heam response was investigated over a wide
range of excitation freguencies and through increasing the
forcing amplitude step wise at each frequency range. S0 it was
possible after several tests to monitor some of the dynamic
characteristics of the beam resgponse at certain freguency

ranges and levels of excitation.

5.3.1 Nonlinear frequency response

characteristics.

The test was first conducted at freqguency range of
(0-50}Hz. The dynamic response of the beam was obhserved to be
simple harmonic within the available range o¢f the forcing
amplitude. However, in the freguency range (50-65} Hz and at a
forcing amplitude 5 below 170 the response was =2imple harmonic
at which the dominant frequency is the external one.Increasing
the force level above 170, by inc¢reasing the acceleration of
the vibration exciter, causes an excitation of other
harmonics, mainly the third super harwmonic. From 65Hz wup to
80Hz, it was noticed that the heam response is simple harmonic
at a forcing amplitude ﬁ below 144. Increasing the amplitude of
force above this level,would excite other higher harmonics such
as the second and the third super harmonics. Similar behavior
was obszerved at the frequency range from 8CHz up to 95 Hz.

However, over this range the response was simple harmonic below
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the forcing amplitude 5= 70. A jump was observed throughout the
frequency range {87 Hz - 93 Hz ). Depending on the force level,
it was also observed that the third super harmonic resonance.of
the first mode was the dominant frequency.

The next range of frequencies that was studied is from
{100—150} Hz. Throughout this range of frequencies several

ohservations were made

a) From (100-110}Hz and at 54144, the response was
simple harmeonic, at §=240 the second and third super harmonics
of the first mode take place simultaneously, although the

external frequency was the predominant.

b} From {(110-125) Hz and at §<100, the response was
simple harmonic. Increasing the forcing amplitude step-wise
above 100 the second super harmonic of the first mode started
to grow while the +third super harmonic contribution Dbecame

insignificant.

c¢) From (125-150} Hz and at ﬁcGO, the response was
gimple harmonic. Increasing phe amplitude step-wise excited the
second super harmonic. A jump was noticed at the frequency
range (140-147)Hz at p= (240 to 450 ) at which the second

super-harmonic resonance frequency was the predominant.

The third range Qf frequencies studied was near the
primary resonance ( i.e near the natural frequency of the first

mode which is 190 Hz). So, in the range from 155 Hz up to 300
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Hz the dynamic response of the beam was harmonic at all force
levels. Algo no sub or super harmeonics were observed, the
predominant frequency was the same as the external excitation
fregquency. A fump was noticed at fregquency range from (290~300)

Hz preceded by high noise.

The fourth frequency range investigated was the range
from 350 Hz up to 600 Hz. Increasing the forcing amplitude
above 120 excites the sub harmonic resonance of order 1/2 , and
at P>240 this sub harmonic becomes the dominant one. Ajump was
observed at frequencies from 550 Hz to 600 Hz depending on the

excitation level .

The fifth fregquency range dealt with was from 610 Hz to
800 Hz. A similar behaviecr to other ranges was observed but at
this range a high noise like cracking was clearly heard at
P>300. A jump was also observed through the frequency range
From 760 Hz to 800 Hz at which the sub harmonic resonance at

order 1/3 was the dominant one

The final range investigated was from {900-1300) Hz,
which 1is near the third natural frequency of the beam.
Increasing the forcing amplitude above 80 step-wise shows that
jump would occur at frequencies near 1200Hz at which no

dominant sub or super harmonics were noticed.

Samples of results shown graphically in Fig's (5.2-5)

for §=60, 120, 360, and 500 respectively. In these figures, the
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vertical axis is the rms value of the normalized displacement
y=Y/h at x/1=0.3 while the horizontal axis is the excitation
frequency in Hz. The two numerals in parenthesis indicate the

mode vibration and the dominant order of harmonic¢s,

respectively.
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Fig.(5-2): Frecquency fesponse characteristics for the

test beam at ﬁ = G60.
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5.3.2 Chaotic motions

In investigating the effect of the large amplitude of
excitation on the nonlinear dynamic response of the test beam,
an attemét wasg made to observe the conditions under which the
transition from regular to chaoti¢ behavior occurs. So the
tests mentioned in the previous section were repeated knowing
that from previous studies made on chaotic motions that ¢haos
does usually occur at certain conditions of system parameters
sueh as force level and damping, Ueda (1979), Moon {1980). This
transitioﬁ occurs near the jumps at frequencies which have a
vertical tangent on resonance curve, such as the sub-super
harmonics, Stupnika and Bajkowski {1986). Another observation
was notified, namely chaos is preceded by a cascade of period
doublihg bifurcation, Fang and Dowell (1987) and broad

frequency spectrum . Moon and Li (1930).

As the model investigated here is deterministic 1in the
sense that all parameters in the eguation of motion are known
ones, the tests were conducted at the frequéncy ranges (60-95)
Hz, (130-150) Hz and in the freguency range (360~570) Hz. These
ranges contain jumps at which the dominant frequencies are the
sub and super harmonics. Tests were conducted by fixing a
certain frequency and changing the level of excitation, the
resulting effects are monitored on the phagse-plane
(displacement vs velocity) pio£5 and time histories of motion.
A sample of the results is shown in Fig.(5-6) which was taken

at 90Hz. By increasing the amplitude of excitation step-wise,
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the phase-plane plot undérgoes a series of period doubling
before chaotic motion occurs. A similar behavior was observed
in the second frequency range {(130Hz-150Hz) which also leads to
n-periodic motions c¢lose to chaos. It should be mentioned that
these motions as {d) in Fig.{5~6) might not persist, it could
suddenly change in the shape, frequency spectra at £=%0 Hz and

f=145 Hz are shown in figures (5-8) and (5-9) respectively.

Through the frequency range (510-560) Hz, the transition
from perlodic to chaotic shows a different behavior.First it
wasn't preceded by period doubling, and second it occurs at a
fixed level of excitation by slightly increasing the forcing
frequencies. Increasing the force level, the beam returns to
periodic motion again. Samples of these motions are presented
in the phase-plane plots and time histories of motion as shown

in Fig.(5-7). The frequency spectrum is shown in Fig.{5-10}.

Depending on these observations, we tried to propose a

criteria for c¢haos in the freguency domain fer different
forcing amplitudes as shown in Fig.{5-11). In the regions
numbered by the roman numeral IIX:chaotic motions, were

observed to occur, while the regions numbered by the roman
numeral IT: multi-periodic motion, were noticed,whereas the
single periodic motion lies within the regions numbered by p
These conclusionsg were based on observing the variation of the
phase-plane trajectories, time histories of motion in addition

to the frequenhcy gspectrum.
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k)

Throughout the 1region in  the neighborhood of the
pPrimary reéonance re¢gion no chaotic motion was recorded and the
response can be considered,  to’ some extent, to be gsimple
harmonic at the available. levels of excitation. Another
behaviof was noticed at certain frequency ranges in particular
at 650 Hz , that motion may change from single periodic to
multi-periodic then to chaotic without changing the level of
excitation or the excitation frequency. When the system is left
fo vibrate,then after some time, these changes in motion occur
suddenly.Sample of this behavior iz  shown in Tig.(S—lz} in
which this transition from -"single to wulti-periodic occurs

after 20 minutes.

Fig.({5-12): Transition from periodic in {a) to

multi-periodic in (b} after 20 minutes at £=650 Hz, E=120.
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Finally,

the variation of the

second and third

harmonic

amplitudes were plotted in the frequency response curves at P =

500

as shown in Fig.{5-13).
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Discussion

During the previous tests which were mainly conducted to
_investigate the effects of level of excitation on the nonlinear
beam dynamic response, it can be inferred that the forcing

amplitude 5 plays a significant role in the determination of

many response characteristics, especially chaos and sub-super -

harmonics. Although the forcing amplitude was limited, the
observations and results o% the beam frequency response
¢haracteristics were found to be in some agreement with the
experimental and theoretical work of Takahashi (1979) except
the fifth harmonic of the third mode and the third harmonic of
the second mode were not observed in this work. Also the
presen@ study somehow shows a similar trend to that reported by
famaki and Mori (1980), but combination resonance of the first
and third modes at the first harmonic¢ was not observed within
the available range of forecing amplitude. Regarding the
observation on chaotic response within the specified frequency
domains and forcing ampl%tudes, taking into account the limited
-range of external excitation, the transition from regular to
chaotic motions in the regions below the first linear resonant
frequency is preceded by a series of period doubling observed
in the phase-plane, accompanied hy a distorted wave forms of
time histories of motionrand broad banded freguency spectrum,
similar to some extent to those reported by Moon Shaw (1982).
In the fregquency ranges above the primary resonance, chaotic
response was recorded and appeared not to he preceded by a

cascade of doubling periods, but appeared only and persist at a
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certain forecing level. Increasing or decreasing the level of
excitation above or below this range this motion ceases to
appear. As was mentioned previously, this range supports the
1/2 sub harmonic resonant fregquency, which is in agreement to
the range reported by Stupnicka (1%87) found in the analcg and

digital computer results.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



Conclusions ' 60

CHAPTER ©

CONCLUSIONS

The objectives of the present work, set in chapter 1,
were to investigate experimentally the effect of the excitation
level on some of the nonlinear dynamiec characteristics of a
clamped beam. This chapter is devoted to summarize the work
done on the thesis, te outline the points which have emerged
from the present investigation and to recommend some points on

this problem for further investigation.

6.1 SUMMARY OF THE WORK

The review of previous studies on the nonlinear response
of a system modeled by Duffing’s equation, revealed the absence
of experimental work on some aspects like the chaotic response.
Most of these investigations were dependent on analog and
digital computer results which appear from the numerical
solutions of Duffing’s equation. The present investigation was
directed toward exploring the effect of the forcing amplitude
on some nonlinear charaﬁteristics of a practical model found in
many real life situations, a beam element with a

clamped-c¢lamped configuration.
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6.2 CONCLUSIONS

Several points have emerged from this experimental work
on the effect of the excitation level on the nonlinear dynamic

response of clamped beam. These can be summarized as follows

a}) The beam element exhibited almost a linear response
at all frequency vranges characterized by simple harmonic
motions and single periodic solutions, when the forcing
amplitude wags less than 50. While at certain regions of
frequency which is in the neighborhood c¢f the fundamental beam
frequency the response was observed to be purely harmonic at

all available forcing levels.

b) Increasing the forcing amplitude, of course, by
controlling the acceleration of base frame and hence the test
beam, the nonlinear behavior was c¢haracterized by many
amplitudes jumps at different excitation frequencies 1in the
increasing and decreasinyg directions. Sub-super harmonics
contribution leading to multi-periodic moticons, the third and
second super harmonics of the f%rst mode wWere observed below
the primary resonance, which shqws a similar trend reported by
Takahashi (1979}, Yamaki {1980); Roberts (1984). The 1/2 and
1/3 sub harmonic response appeared above the primary response
i.e, at frequencies above the natural frequency of the first

mode.

¢) The transition from regular to chaotic motions

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit




Conclusieons 62

occursnear the amplitude jump of the 1/2 sub harmonics response
within a certain range of the forcing amplitude, which is in
agreement to the results of Ueda (1979), Stupnicka (1987). 1In
thé third and second super harmonic resonance a series of
periodie¢ doubling occurs at increasing force leﬁels in the

route to chaos.

d) Differences among investigators results, may be
referred tb the differences in the method of study, whether it
was a computer simulation or experimental investigation and
also in the experimental conditions, such as, method of beam

support, damping, material and methods of measurements.

@) There is a close connection between the forcing level
amplitude jumps sub and super harmonics to the occurrence of

chaotic response of this nonlinear model.

6~ 4 RECOMMENDATIONS FOR FUTURE WORK

The review of previous work presented in chapter 2 with
the present experimental work, suggest that more experimental
work is needed to understand the different aspects arise in the
nonlinear forced vibration. The area of' research, that might be

needed, for further experimental investigations

a) Experimeﬁts on a model with multi-degree of freedom
or witlh n coupled modes of vibratien, since c¢haotic response

has not been thoroughly studied in systems with more than one
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degree of freedom.

b) A test beam model with different c¢ross sectional
areas with different types of excitations, i.e unsymmetric and
symmetric, and different boundary <c¢onditions, have to be

investigated in a combination of these conditions.

¢) Experiments on a real structures in space such as the
practical truss-type c¢onstructicon in which the looseness of
joints may bring inh nonlinearities which have to bhe
investigated using new tcols instead of the linear methods to

understand the dynamics of such structures.

d) The contribution of other nonlinear vibration modes
such as torsional, axial in additicon to the flexural forced
vibration simultanecusly for the test Dbeam, has to be

thoroughly performed on a proper model.

e} A threshold c¢riteria for chaotic response that can be
valid for different cases for nonlinear vibrating systems, have
not been fully developed, the exciting ones merely wvalid f{for
specified cases.

£f) A study of the effect of dJdamping on chaos and
whether it may be possible to construct certain devices to
avoid occurance of chaoé or at least to diminish their negative

effects.
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